HYPERSONIC FLOW-PAST OF PLANE BLUNT BODIES
BY A NONVISCOUS RADIATING GAS
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An analytic solution is obtained in the work in a Newtonian approximation [1] for the flow-past
problem for a plane blunt body by a steady-state uniform hypersonic inviscous space-radiating
gas flow. The hypersonic flow-past problem for axisymmetrical blunt bodies by a nonviscous
space-radiating gas has been previously considered [2-4]. In this case a satisfacfory solution
of the problem was obtained even in a zero-th approximationby decomposing the unknown values
in terms of a parameter £ equal to the ratio of gas densities before and after passage of the
shock wave, The solution of the problem in a zero-th approximationwith respect to ¢ in the
case of flow-past of plane blunt bodies does not turn out to be satisfactory, since the departure

of the shock and the radiant flux to the body as gas flows into the shock layer turns out to be
strongly overstated under nearly adiabatic conditions, Freeman [5] demonstrated that results
may be significantly improved for flow-past of a plane bluntbody by a nonradiating gas if a more
precise expression is used for the tangential velocity component expressed in a new approxima-
tion with respect to the parameter €. This refinement is applied in this work for solving the
flow-past problem for a plane bluat body by a space-radiating gas, The distribution of the gas-
dynamic parameters in the shock layer, the departure of the shock wave, and the radiant heat
flux to the surface of the body are found, The solution obtained is analyzed in detail for the ex-
ample of flow~past regarding a circular cylinder,

1. The system of dimensionless equations describing the flow of a nonviscous nonheat~conducting,
chemically balanced space-radiating gas in a shock layer about a plane blunt body has the form [1]
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Here ix and el y are coordinates directed along the surface of the body and along the normal to it, uv

and €V, v are the velocity components of the gas in the direction of these coordinates, £7p_p is the density,
pwviop is the pressure, O.SVEOh is the enthalpy, Tgxr is the gas temperature, KpgxKp is the Planck ab-
sorption coefficient, /R(x) is the radius of curvature of the surface of the body, /r is the distance from the
axis of symmetry to a given point, ! is the characteristic linear scale, I"is the radiation parameter, « is

the Stefan—Boltzmann constant, « is the angle between the tangent to the body and the direction of the veloc-
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ity of undisturbed flow, and 0,,V./¢ is a stream function determined by the equation dy = p udy — pvHdx.
The indices «, s, *, and w denote the incident flow parameters, parameters directly behind the shock
wave, the characteristic values of the parameters, and their values on the body surface, respectively.

In deriving'the system (1.1) it was assumed that self-radiation of the comparatively cold surface of
the body can be ignored.

The boundary conditions on the shock wave have the form
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where g is the angle between the tangent to the shock wave and the direction of undisturbed flow, M, is
the Mach number of the incident flow, and yg = yg(x) is the shock-wave equation. We assume that

P=0 (13)

on the surface of the body.

2. The solution of the system of equations (1.1) with boundary conditions (1.2), (1.3) is found in the
form of decompositions [1, 5] with respect to a small parameter &,

b, D=1z W) + efle, W+, @0

where f is any of the functions u?, v, t, p,p,h,or T, Itisfurtherassumed that all these functions and their
first derivatives are magnitudes on the order of one in the shock layer. Substituting the decomposition
of Eq. (2.1) in the system of equations (1.1), we obtain to a zero-th approximation,
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We will further limit ourselves to the zero-th approximation (2,2) for hy, py, and T, following previous works
[5, 8], and we will use for the tangential and normal velocity components and the geometric coordinates,
the first-order approximation
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The boundary conditions in the shock take the form -
P=P:(D)=ro(2); ug(x, Ps)=00s a(2); PsolZ5) =sin*a(z); 2.4
hool@nps) =sina(2); te(2p;)==0. )
Integrating the first equations of (2.2) and taking into account Eqs. (2.4), we obtain
gz, )=cos alt); (2.5)
o, €) = sin® & (z) — Ez‘z)‘ { cos (1) sin e (1) dt, 2.6)
t
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where t is a coordinate fixing the point at which a given streamline enters the shock layer.

An analysis of tables {7, 8] demonstrates that in definite temperature and pressure intervals we may
use the equation of state (in dimensional form)

h=%/(y — V)plp 2.7

(v is the effective ratio of the heat capacities of the gas in the shock layer) and also approximates the Planck
absorption coefficient in the form

Hp=ApT™, (2.8)

where A and n are the constants of approximation. Then the energy equation, taking into account Egs, (2 .4)~
(2.8), has the solution
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We find the solution of the system of equations (2.3), taking into account Egs. (2.5)-(2.9),
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Departure of the shock wave is determined from Eqs. (2,10) at t = x. The normal velocity component is
found by differentiating Eq, (2.10): v = udy/8x.

We determine the distribution of the radiant flux along the surface of the body on the basis of the
parameters obtained for the gas flow in the shock layer,
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3. We will consider in more detail, as an example, flow-past of acircular cylinder of radius Rbya
hypersonic air flow, In this case we obtain, given the geometric relations I =R, a(x) = 7/2— §; and &=
772~ alt),
(D) =sin @;
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We note that the method of solution is not suitable in a neighborhood of a Newtonian point of discontinuity,

at which pressure at the surface of the body falls to zero [5], For a cylinder this corresponds to a value
o1 the angle 0, calculated at the critical point,

0 =arcsin}/ 2/3="54%%4".
The tangential velocity component for the first-order approximation has the form

!
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We represent departure of the shock wave by

1
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where a substitution of variables in the form sin® =t sin @, has been carried out, Then the radiant flux
to the surface of the body is determined by the equation
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4. Let us consider the limiting cases of the equations we have obtained, We approximately set in
the integrand of Eq. (3.2)

ho(6', ©)azhy(8, D). (4.1)

This substitution introduces an error only in the terms 0(¢) and aliows us to obtain a correct result in the
case of the flow of a nonradiating gas., Equation (3.2) is integrated, taking into account Eq. (4.1),
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Atb « 1, when the gas radiates weakly, Eq. (3.1) implies

hy(8, O)=cos*d. (4.2)
Taking into account Eqgs. (3.3) and (4.2), we obtain the equation for the departure of the shock wave,
1
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We find the value for the angles 9 < 7/6 for which we decompose in Eqgs. (4.3) the logarithmic function in
a series in powers of sin® ¢ (cancelling by sin #) and omit in the integrand remaining terms on the order
of sin% and above,
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We obtain from Eq. (4.4) on the critical line (# = 0) at 3¢ << 1 an equation for departure of the shock wave
(in dimensional form)

R 4
AS(O)=%-1n3—'E-.

This equation agrees with previous results [5, 6] obtained for the flow of a nonradiating gas.

The radiant flux to the surface of the cylinder at b << 1 has the form
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The same flux is calculated at the critical point 4 = 0 exactly by
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The physical meaning of this equation is that it gives a radiant flux from a homogeneous plane, space-ra-
diating gas layer with thickness equal to the magnitude of the shock-wave departure (4.4). Carrying out
the decompositions similar to those used in the derivation of Eq. (4.4}, from Eq. (4,5) we obtain
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We may note that, unlike the analogous expression obtained for sphere flow~past [3], the exponent m in Eq.
(4.6) turns out to be less and depends not only on n, but also on ¢, Moreover, the magnitude of the radiant
flux at the critical point qw(O) is greater for a cylinder than for a sphere due to the greater magnitude of
shock-wave departure, We will take ¢ = 0.05 and n = 8 for a numerical estimate on the basis of the tables
[7, 8]. In this case the ratio of the magnitudes for the cylinder (index 1) to the magnitude for a sphere
(index 2) is written in the form

m={n-+95)

F01(0)/qu0)=1.74; 1ny/m,=0.748.
In a second limiting case, when the gas is strongly radiating (b > 1), the asymptotic calculation of the in-
tegral in Eq. (3.4) for angles # =< 7/6 leads to the equation for shock-wave departure,

1

I
_yhtweg p MM 477
ys(8) = 2 n+3 L 1 . @0
* COS~—"+"‘6

The distribution of the radiant flux at b > 1 under these assumptions has the form

cos? 0 (4.8)
7w (0) = 02 .

A comparison of the equations for a cylinder (4.4) and (4.6)-(4.8) with the corresponding equations pre-
viously obtained [3] for sphere flow-past demonstrate that the strongest difference in the radiant flux Qg (?)
and the shock-wave departure ¥g(9) is observed for flow-past of these bodies by a weakly radiating gas

(b < 1).

The magnitudes q(9) and VG for flow-past of aplane and axisymmetrical body are similar in the case
of a strongly radiating gas (b > 1), This is explained by the fact that the distribution of the flow param-
eters near the shock wave, and not in a sublayer near the body, where the behavior of the parameters is
less important for determining dw(8) and y(9), plays a determining role at b>1,
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